If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+14b+24=0
a = 1; b = 14; c = +24;
Δ = b2-4ac
Δ = 142-4·1·24
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-10}{2*1}=\frac{-24}{2} =-12 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+10}{2*1}=\frac{-4}{2} =-2 $
| 121+x+29=180 | | -15=p=4p | | x11+9=11 | | 13-y=206 | | 2.2=6.7-0.5x | | -9=6w–7w | | -21−38+x=-37 | | T(-4)=6+3x-2 | | -15x−19=-12 | | 56/80=x/100 | | S(2)=12-0.25x | | 98=5u+8 | | 4c-8=7c+77 | | -21x−38=-37 | | 73=1+3x | | 10+(3x/5)+3=4x | | 9x=324 | | 8y−5=y+9 | | P=13+5d/9 | | 6x+15=75+2x | | (8/6)x=3/4 | | 11/10-(5x-2)=1/5x-12 | | S(-4)=12-0.25x | | y+39=-89 | | H(2)=7-2x | | (10+3x)/5+3=4x | | H(0)=7-2x | | 2x+2+66=90 | | 9x-17=4x+33 | | 10x-2=7x+8 | | H(-4)=7-2x | | –3=z+4 |